level needed to permit continued safe flight and landing. [Doc. No. 26269, 58 FR 42164, Aug. 6, 1993] ### §23.673 Primary flight controls. Primary flight controls are those used by the pilot for the immediate control of pitch, roll, and yaw. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23–48, 61 FR 5148, Feb. 9, 1996] ### §23.675 Stops. - (a) Each control system must have stops that positively limit the range of motion of each movable aerodynamic surface controlled by the system. - (b) Each stop must be located so that wear, slackness, or takeup adjustments will not adversely affect the control characteristics of the airplane because of a change in the range of surface travel. - (c) Each stop must be able to withstand any loads corresponding to the design conditions for the control system [Amdt. 23-17, 41 FR 55464, Dec. 20, 1976] #### §23.677 Trim systems. - (a) Proper precautions must be taken to prevent inadvertent, improper, or abrupt trim tab operation. There must be means near the trim control to indicate to the pilot the direction of trim control movement relative to airplane motion. In addition, there must be means to indicate to the pilot the position of the trim device with respect to both the range of adjustment and, in the case of lateral and directional trim, the neutral position. This means must be visible to the pilot and must be located and designed to prevent confusion. The pitch trim indicator must be clearly marked with a position or range within which it has been demonstrated that take-off is safe for all center of gravity positions and each flap position approved for takeoff. - (b) Trimming devices must be designed so that, when any one connecting or transmitting element in the primary flight control system fails, adequate control for safe flight and landing is available with— - (1) For single-engine airplanes, the longitudinal trimming devices; or - (2) For multiengine airplanes, the longitudinal and directional trimming devices. - (c) Tab controls must be irreversible unless the tab is properly balanced and has no unsafe flutter characteristics. Irreversible tab systems must have adequate rigidity and reliability in the portion of the system from the tab to the attachment of the irreversible unit to the airplane structure. - (d) It must be demonstrated that the airplane is safely controllable and that the pilot can perform all maneuvers and operations necessary to effect a safe landing following any probable powered trim system runaway that reasonably might be expected in service, allowing for appropriate time delay after pilot recognition of the trim system runaway. The demonstration must be conducted at critical airplane weights and center of gravity positions. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23–7, 34 FR 13091, Aug. 13, 1969; Amdt. 23–34, 52 FR 1830, Jan. 15, 1987; Amdt. 23–42, 56 FR 353, Jan. 3, 1991; Amdt. 23–49, 61 FR 5165, Feb. 9, 1996] ## §23.679 Control system locks. - If there is a device to lock the control system on the ground or water: - (a) There must be a means to— - (1) Give unmistakable warning to the pilot when lock is engaged; or - (2) Automatically disengage the device when the pilot operates the primary flight controls in a normal manner - (b) The device must be installed to limit the operation of the airplane so that, when the device is engaged, the pilot receives unmistakable warning at the start of the takeoff. - (c) The device must have a means to preclude the possibility of it becoming inadvertently engaged in flight. [Doc. No. 26269, 58 FR 42164, Aug. 6, 1993] #### §23.681 Limit load static tests. - (a) Compliance with the limit load requirements of this part must be shown by tests in which— - (1) The direction of the test loads produces the most severe loading in the control system; and ### § 23.683 (2) Each fitting, pulley, and bracket used in attaching the system to the main structure is included. (b) Compliance must be shown (by analyses or individual load tests) with the special factor requirements for control system joints subject to angular motion. #### §23.683 Operation tests. - (a) It must be shown by operation tests that, when the controls are operated from the pilot compartment with the system loaded as prescribed in paragraph (b) of this section, the system is free from— - (1) Jamming; - (2) Excessive friction; and - (3) Excessive deflection. - (b) The prescribed test loads are- - (1) For the entire system, loads corresponding to the limit airloads on the appropriate surface, or the limit pilot forces in §23.397(b), whichever are less; and - (2) For secondary controls, loads not less than those corresponding to the maximum pilot effort established under § 23.405. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23-7, 34 FR 13091, Aug. 13, 1969] # § 23.685 Control system details. (a) Each detail of each control system must be designed and installed to prevent jamming, chafing, and interference from cargo, passengers, loose objects, or the freezing of moisture. (b) There must be means in the cockpit to prevent the entry of foreign objects into places where they would jam the system. (c) There must be means to prevent the slapping of cables or tubes against other parts. (d) Each element of the flight control system must have design features, or must be distinctively and permanently marked, to minimize the possibility of incorrect assembly that could result in malfunctioning of the control system. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23–17, 41 FR 55464, Dec. 20, 1976] # §23.687 Spring devices. The reliability of any spring device used in the control system must be es- tablished by tests simulating service conditions unless failure of the spring will not cause flutter or unsafe flight characteristics. #### § 23.689 Cable systems. - (a) Each cable, cable fitting, turn-buckle, splice, and pulley used must meet approved specifications. In addition— - (1) No cable smaller than 1/8 inch diameter may be used in primary control systems; - (2) Each cable system must be designed so that there will be no hazardous change in cable tension throughout the range of travel under operating conditions and temperature variations; and - (3) There must be means for visual inspection at each fairlead, pulley, terminal, and turnbuckle. - (b) Each kind and size of pulley must correspond to the cable with which it is used. Each pulley must have closely fitted guards to prevent the cables from being misplaced or fouled, even when slack. Each pulley must lie in the plane passing through the cable so that the cable does not rub against the pulley flange. - (c) Fairleads must be installed so that they do not cause a change in cable direction of more than three degrees. - (d) Clevis pins subject to load or motion and retained only by cotter pins may not be used in the control system. - (e) Turnbuckles must be attached to parts having angular motion in a manner that will positively prevent binding throughout the range of travel. - (f) Tab control cables are not part of the primary control system and may be less than 1/8 inch diameter in airplanes that are safely controllable with the tabs in the most adverse positions. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23–7, 34 FR 13091, Aug. 13, 1969] # §23.691 Artificial stall barrier system. If the function of an artificial stall barrier, for example, stick pusher, is used to show compliance with §23.201(c), the system must comply with the following: (a) With the system adjusted for operation, the plus and minus airspeeds